*Memos:
- My post explains RandomHorizontalFlip().
- My post explains OxfordIIITPet().
RandomVerticalFlip() can flip an image randomly and vertically as shown below:
*Memos:
- The 1st argument for initialization is
p
(Optional-Default:0.5
-Type:int
orfloat
): *Memos:- It's the probability of whether an image is flipped or not.
- It must be
0 <= x <= 1
.
- The 1st argument is
img
(Required-Type:PIL Image
ortensor
(int
)): *Memos:- A tensor must be 2D or 3D.
- Don't use
img=
.
-
v2
is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomVerticalFlip
randomverticalflip = RandomVerticalFlip()
randomverticalflip = RandomVerticalFlip(p=0.5)
randomverticalflip
# RandomVerticalFlip(p=0.5)
randomverticalflip.p
# 0.5
origin_data = OxfordIIITPet(
root="data",
transform=None
# transform=RandomVerticalFlip(p=0)
)
p1_data = OxfordIIITPet(
root="data",
transform=RandomVerticalFlip(p=1)
)
p05_data = OxfordIIITPet(
root="data",
transform=RandomVerticalFlip(p=0.5)
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=p1_data, main_title="p1_data")
show_images1(data=p1_data, main_title="p1_data")
show_images1(data=p1_data, main_title="p1_data")
print()
show_images1(data=p05_data, main_title="p05_data")
show_images1(data=p05_data, main_title="p05_data")
show_images1(data=p05_data, main_title="p05_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, prob=0):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
rvf = RandomVerticalFlip(p=prob)
plt.imshow(X=rvf(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="p1_data", prob=1)
show_images2(data=origin_data, main_title="p1_data", prob=1)
show_images2(data=origin_data, main_title="p1_data", prob=1)
print()
show_images2(data=origin_data, main_title="p1_data", prob=0.5)
show_images2(data=origin_data, main_title="p1_data", prob=0.5)
show_images2(data=origin_data, main_title="p1_data", prob=0.5)
Top comments (0)