DEV Community

Cover image for Building Microservices with Nest.js is that simple!
Jakub Andrzejewski
Jakub Andrzejewski

Posted on • Edited on • Originally published at blog.vuestorefront.io

Building Microservices with Nest.js is that simple!

Nest.js is a progressive Node.js framework for building efficient, reliable, and scalable server-side applications. This definition, although very accurate, doesn't indicate when to use Nest.js in the next project, and I'll try to throw some light on that issue.

Nest.js can be seen as Angular on the backend (as one of my friends called it) as it provides a plethora of useful features, and - just as Angular can be a bit overwhelming at first glance. To avoid overloading with the info, I'll skip to the most crucial ones from my point of view.

  • Built with TypeScript
  • Many technologies supported out of the box (GraphQL, Redis, Elasticsearch, TypeORM, microservices, CQRS, …)
  • Built with Node.js and Supports both Express.js and Fastify
  • Dependency Injection
  • Architecture (!)

Core Concepts of Nest.js

If you are not yet familiar with Nest.js there are three basic concepts that you will be working all the time; Modules, Controllers, and Services.

Modules

Modules encapsulate logic into reusable pieces of code (components).

// app.module.ts

@Module({
  imports: [],       // Other modules
  controllers: [],   // REST controllers
  providers: [],     // Services, Pipes, Guards, etc
})

export class AppModule {}
Enter fullscreen mode Exit fullscreen mode

Controllers

Used to handle REST operations (HTTP methods).

// app.controller.ts

@Controller()      // Decorator indicating that the following TypeScript class is a REST controller
export class AppController {
  constructor(private readonly appService: AppService) {}    // Service available through Dependency Injection  

  @Get()     // HTTP method handler
  getHello(): string {
    return this.appService.getHello();     // Calling a service method
  }
}
Enter fullscreen mode Exit fullscreen mode

Services

Services are used to handle logic and functionality. Service methods are called from within a controller.

// app.service.ts

@Injectable()       // Decorator that marks a TypeScript class a provider (service)
export class AppService {
  constructor() {}       // Other services, repositories, CQRS handlers can be accessed through Dependency Injection

  getHello(): string {
    return 'Hello World!';      // Plain functionality
  }
}
Enter fullscreen mode Exit fullscreen mode

Microservices

There is a great articles series by Chris Richardson regarding Microservices available on https://microservices.io/. Make sure to read it first if you are not familiar with this concept.

Ok, let's jump to the code! You will need two repositories that I have prepared for this tutorial:

Make sure to clone them and install all required dependencies. We will also need a Docker installed on our system and a Database Management Tool of your choice (I am using Table Plus). Also, a Postman would be needed to test endpoints.

Refactoring basic server to microservices

In this section what we will do is we will be converting two basic Nest.js servers to a main server (API Gateway) and microservice (responsible for handling item operations).

If you get lost at some point, inside the repositories there are commits and branches that will help you do the refactor step by step.

Repositories

There are two repositories ready to serve as a simple example and they are very similar Nest.js servers with small differences:

nest-microservice:

  • .env.example file with environment variables that you would need to copy to .env file for the docker-compose.yml to work.
# Database
POSTGRES_VERSION=13-alpine
POSTGRES_USERNAME=postgres_user
POSTGRES_PASSWORD=postgres_password
POSTGRES_DATABASE=item
POSTGRES_PORT=5433
POSTGRES_HOST=localhost
Enter fullscreen mode Exit fullscreen mode
  • docker-compose.yml file with configuration of PostgreSQL image to serve our database.
// docker-compose.yml

version: '3.7'
services:
  postgres:
    container_name: microservice_postgres
    image: postgres:${POSTGRES_VERSION}
    environment: 
      - POSTGRES_USER=${POSTGRES_USERNAME}
      - POSTGRES_PASSWORD=${POSTGRES_PASSWORD}
      - POSTGRES_DB=${POSTGRES_DATABASE}
    ports:
      - ${POSTGRES_PORT}:5432
    volumes:
      - /data/postgres/
    networks:
      - microservice-network

networks: 
    microservice-network:
        driver: bridge
Enter fullscreen mode Exit fullscreen mode
  • required npm packages for the demo to work.
// package.json

...
  "dependencies": {
    "@nestjs/common": "^7.6.15",
    "@nestjs/config": "^0.6.3",
    "@nestjs/core": "^7.6.15",
    "@nestjs/microservices": "^7.6.15",
    "@nestjs/platform-express": "^7.6.15",
    "@nestjs/typeorm": "^7.1.5",
    "pg": "^8.6.0",
    "reflect-metadata": "^0.1.13",
    "rimraf": "^3.0.2",
    "rxjs": "^6.6.6",
    "typeorm": "^0.2.32"
  },
Enter fullscreen mode Exit fullscreen mode

nest-demo:

  • required npm packages for the demo to work.
// package.json

...
  "dependencies": {
    "@nestjs/common": "^7.6.15",
    "@nestjs/config": "^0.6.3",
    "@nestjs/core": "^7.6.15",
    "@nestjs/microservices": "^7.6.15",
    "@nestjs/platform-express": "^7.6.15",
    "reflect-metadata": "^0.1.13",
    "rimraf": "^3.0.2",
    "rxjs": "^6.6.6"
  },
Enter fullscreen mode Exit fullscreen mode

Both projects are basic Nest.js servers:

// main.ts

import { NestFactory } from '@nestjs/core';
import { AppModule } from './app.module';

async function bootstrap() {
  const app = await NestFactory.create(AppModule);
  await app.listen(3000);
}
bootstrap();

// app.module.ts

import { Module } from '@nestjs/common';
import { AppController } from './app.controller';
import { AppService } from './app.service';

@Module({
  imports: [],
  controllers: [AppController],
  providers: [AppService],
})
export class AppModule {}

// app.controller.ts

import { Controller, Get } from '@nestjs/common';
import { AppService } from './app.service';

@Controller()
export class AppController {
  constructor(private readonly appService: AppService) {}

  @Get()
  getHello(): string {
    return this.appService.getHello();
  }
}

// app.service.ts

import { Injectable } from '@nestjs/common';

@Injectable()
export class AppService {
  getHello(): string {
    return 'Hello World!';
  }
}

Enter fullscreen mode Exit fullscreen mode

If we run these servers using yarn dev or npm run dev commands we would see in the browser Hello World.

Now into the actual refactoring

What we will do in this sections is we will take the code from the basic server and refactor it to API Gateway and a microservice. If you are not yet familiar with the concept of API Gateway there is a great article about it by Chris Richardson on https://microservices.io/patterns/apigateway.html.

nest-demo:

  • Inside app.module.ts we will add a ClientsModule with some option to allow our server to communicate to the microservice using TCP connection.
// app.module.ts

import { Module } from '@nestjs/common';
import { ClientsModule, Transport } from '@nestjs/microservices';
import { AppController } from './app.controller';
import { AppService } from './app.service';

@Module({
  imports: [
    ClientsModule.register([{ name: 'ITEM_MICROSERVICE', transport: Transport.TCP }])
  ],
  controllers: [AppController],
  providers: [AppService],
})
export class AppModule {}
Enter fullscreen mode Exit fullscreen mode
  • Inside app.controller.ts we will add two new endpoints that would allow us to test both READ and WRITE functionality.
// app.controller.ts

import { Body, Controller, Get, Param, Post } from '@nestjs/common';
import { AppService } from './app.service';

@Controller()
export class AppController {
  constructor(private readonly appService: AppService) {}

  @Get()
  getHello(): string {
    return this.appService.getHello();
  }

  @Get('/item/:id')
  getById(@Param('id') id: number) {
    return this.appService.getItemById(id);
  }

  @Post('/create')
  create(@Body() createItemDto) {
    return this.appService.createItem(createItemDto);
  }
}
Enter fullscreen mode Exit fullscreen mode
  • Inside app.service.ts we will add two additional methods to handle new endpoints by sending a message pattern and data to the corresponding microservice.
// app.service.ts

import { Inject, Injectable } from '@nestjs/common';
import { ClientProxy } from '@nestjs/microservices';

@Injectable()
export class AppService {
  constructor(
    @Inject('ITEM_MICROSERVICE') private readonly client: ClientProxy
  ) {}

  getHello(): string {
    return 'Hello World!';
  }

  createItem(createItemDto) {
    return this.client.send({ role: 'item', cmd: 'create' }, createItemDto);
  }

  getItemById(id: number) {
    return this.client.send({ role: 'item', cmd: 'get-by-id' }, id); 
  }
}
Enter fullscreen mode Exit fullscreen mode

In here we are injecting the ITEM_MICROSERVICE client that we have declared in app.module.ts in order to later use it in certain methods to send the message.
send method accepts two arguments; messagePattern in a form of an object, and a data.
** If you need to pass more than one variable (i.e. firstName and lastName) create an object out of it and send them in that form as a second argument.
Make sure to remember or copy the value of messagePattern because we will need it in that exact form in the microservice to respond to this message.

And that will be it for the nest-demo project. Do not run the project yet as the microservice is not ready yet to handle requests.

nest-microservice:

  • Create item.entity.ts file. It will be used to model our database tables.
// item.entity.ts

import { BaseEntity, Column, Entity, PrimaryGeneratedColumn } from "typeorm";

@Entity()
export class ItemEntity extends BaseEntity {
    @PrimaryGeneratedColumn()
    id: number;

    @Column()
    name: string;
}
Enter fullscreen mode Exit fullscreen mode

In here we are declaring a table with two columns; id and name.

  • Create item.repository.ts file to be able to work with the entity on the database (create, find, delete, etc).
// item.repository.ts

import { EntityRepository, Repository } from "typeorm";
import { ItemEntity } from "./item.entity";

@EntityRepository(ItemEntity)
export class ItemRepository extends Repository<ItemEntity> {}
Enter fullscreen mode Exit fullscreen mode

In here we could create our methods for for working with entity but for this tutorial we will only need the default ones provided by typeorm.

  • Modify app.module to connect to the PostgreSQL database Docker container and load ItemRepository and ItemEntity.
// app.module.ts

import { Module } from '@nestjs/common';
import { TypeOrmModule } from '@nestjs/typeorm';
import { AppController } from './app.controller';
import { AppService } from './app.service';
import { ItemEntity } from './item.entity';
import { ItemRepository } from './item.repository';

@Module({
  imports: [
    TypeOrmModule.forRoot({
      type: 'postgres',
      host: 'localhost',
      port: 5433,
      username: 'postgres_user',
      password: 'postgres_password',
      database: 'item',
      synchronize: true,
      autoLoadEntities: true,
    }),
    TypeOrmModule.forFeature([ItemRepository, ItemEntity])
  ],
  controllers: [AppController],
  providers: [AppService],
})
export class AppModule {}
Enter fullscreen mode Exit fullscreen mode

** *For the real application remember to not use credentials in plain values but use environment variables or/and @nestjs/config package.

  • Refactor main.ts file from basic Nest.js server to Nest.js Microservice.
// main.ts

import { NestFactory } from '@nestjs/core';
import { Logger } from '@nestjs/common';
import { Transport } from '@nestjs/microservices';

import { AppModule } from './app.module';

const logger = new Logger('Microservice');

async function bootstrap() {
  const app = await NestFactory.createMicroservice(AppModule, {
    transport: Transport.TCP,
  });

  await app.listen(() => {
    logger.log('Microservice is listening');
  });
}
bootstrap();
Enter fullscreen mode Exit fullscreen mode
  • Refactor app.controller.ts to listen to messages rather than HTTP methods (messagePattern from nest-demo will be needed here).
// app.controller.ts

import { Body, Controller, Get, Param, Post } from '@nestjs/common';
import { MessagePattern } from '@nestjs/microservices';
import { AppService } from './app.service';

@Controller()
export class AppController {
  constructor(private readonly appService: AppService) {}

  @Get()
  getHello(): string {
    return this.appService.getHello();
  }

  @MessagePattern({ role: 'item', cmd: 'create' })
  createItem(itemDto) {
    return this.appService.createItem(itemDto)
  }

  @MessagePattern({ role: 'item', cmd: 'get-by-id' })
  getItemById(id: number) {
    return this.appService.getItemById(id);
  }
}
Enter fullscreen mode Exit fullscreen mode

In here we are using the messagePattern from nest-demo to react for the messages with certain pattern and we trigger methods inside appService.

  • Refactor app.service to handle the READ and WRITE methods.
// app.service.ts

import { Injectable } from '@nestjs/common';
import { ItemEntity } from './item.entity';
import { ItemRepository } from './item.repository';

@Injectable()
export class AppService {
  constructor(
    private readonly itemRepository: ItemRepository,
  ) {}

  getHello(): string {
    return 'Hello World!';
  }

  createItem(itemDto) {
    const item = new ItemEntity();
    item.name = itemDto.name;
    return this.itemRepository.save(item);
  }

  getItemById(id) {
    return this.itemRepository.findOne(id);
  }
}
Enter fullscreen mode Exit fullscreen mode

In here we are using the injected itemRepository to save a new ItemEntity or find existing one by id.

Running all API Gateway, Microservice and Database Container

To run all services I would recommend to open two terminal windows or three if you are not using Docker Desktop.

  1. Run PostgreSQL container by using docker-compose up in nest-microservice project or by using Docker Desktop.
  2. Run yarn dev or npm run dev in nest-microservice project to start microservice.
  3. Run yarn dev or npm run dev in nest-demo project to start API Gateway.

Testing if everything is working correctly

  1. Connect to your PostgreSQL container with TablePlus using the same credentials that you used for your Nest.js application in TypeORM module.
  2. Trigger a POST endpoint in Postman to http://localhost:3000/create with name of your item in the body
  3. You should see the response in Postman and also a new record in the TablePlus.
  4. To test even further you could also send a GET request to http://localhost:3000/item/:id where :id will be 1. And you should see the correct item object that we got from the PostgreSQL.

Summary

In less than 10 minutes of this article time we have refactored two basic Nest.js servers to API Gateway and a microservice. Well done!
However, to better understand this topic you would probably need more time but this is a solid introduction to the topic of Microservices in Nest.js.

Useful links

Bonus: Microservice Template

If you are interested in more advanced example of Nest.js Microservices I have created a Microservice Template that you can use to create your own microservices.
https://github.com/otasoft/microservice-template

It consists of:

  • PostgreSQL Typeorm
  • CQRS
  • Domain Driven Design
  • Event Sourcing
  • Healthchecks
  • Unit tests
  • .env support
  • RabbitMQ Event Bus Connection
  • Dockerfile and docker-compose
  • doc directory
  • Github workflows and issue templates

Top comments (4)

Collapse
 
almorisson profile image
Mor NDIAYE

Very clear. Thanks for this tutorial. I really appreciate it along with the resources you shared in it. I will be happy to read more advanced topics in microservices in nest.js from you.

I plan to migrate our enterprise Flask API to nest.js and I will be glad to have your opinion about the pros and cons to adopt directly microservices rather than a classical monolithic rest api.

Thanks for this nice tutorial once again

Collapse
 
jacobandrewsky profile image
Jakub Andrzejewski

Hi Mor,

I am glad you liked the article!

I will be writing more Nest.js related content soon so stay tuned! :)

Regarding your issue. It really depends on the complexity of your project. I once started a project in Nest.js with Microservices from scratch and it was really a nightmare for developers to develop it as it required many steps to even start the project. What I would suggest instead would be to go for the modular monolith which is relatively simple to create in Nest.js and considering how easy it is to refactor single Nest.js app into microservices I would highly advise that.

In summary, build a single application at first and when it will start to grow extract certain pieces of it (i.e. certain modules) into separate microservices. Thanks to that you wont be overloaded at the start of the project with too many microservices and you will scale when you will actually need it.

Let me know if that answered your question :)

Collapse
 
almorisson profile image
Mor NDIAYE • Edited

Hi Jakub,

Thank you for your feedback. You totally answered my questions.

Hurry to read your next article on this topic.

Have a nice day !

Collapse
 
umasankarswain profile image
umasankar-swain