Simple Line Plot using Matplotlib
A simple line plot in Matplotlib is a basic visualization that represents the relationship between two variables (usually denoted as X and Y) using a continuous line. It's commonly used to display trends, patterns, or changes over time.
Here's how you can create a simple line plot using Matplotlib in Python:
import matplotlib.pyplot as plt
import numpy as np
# Define data values
x_values = np.array([1, 2, 3, 4]) # X-axis points
y_values = x_values * 2 # Y-axis points (twice the corresponding x-values)
# Create the line plot
plt.plot(x_values, y_values)
# Add labels and title
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.title("Simple Line Plot")
# Display the plot
plt.show()
In this example:
- We use NumPy to define the x-values (evenly spaced points from 1 to 4).
- The y-values are calculated as twice the corresponding x-values.
- The
plt.plot()
function creates the line plot. - We set labels for the axes and a title for the plot.
If you'd like to see more examples or explore different line plot styles, let me know! 🚀
Object-Oriented API
Let's delve into the object-oriented API in Matplotlib.
Object-Oriented Interface (OO):
- The object-oriented API gives you more control and customization over your plots.
- It involves working directly with Matplotlib objects, such as
Figure
andAxes
. - You create a
Figure
and one or moreAxes
explicitly, then use methods on these objects to add data, configure limits, set labels, etc. - This approach is more flexible and powerful, especially for complex visualizations.
Now, let's create a simple example using the object-oriented interface. We'll plot the distance traveled by an object under free-fall with respect to time.
import numpy as np
import matplotlib.pyplot as plt
# Generate data points
time = np.arange(0., 10., 0.2)
g = 9.8 # Acceleration due to gravity (m/s^2)
velocity = g * time
distance = 0.5 * g * np.power(time, 2)
# Create a Figure and Axes
fig, ax = plt.subplots(figsize=(9, 7), dpi=100)
# Plot distance vs. time
ax.plot(time, distance, 'bo-', label="Distance")
ax.set_xlabel("Time")
ax.set_ylabel("Distance")
ax.grid(True)
ax.legend()
# Show the plot
plt.show()
In this example:
- We create a
Figure
usingplt.subplots()
and obtain anAxes
object (ax
). - The
ax.plot()
method is used to plot the distance data. - We customize the plot by setting labels, grid, and adding a legend.
Feel free to explore more features of the object-oriented API for richer and more complex visualizations! 🚀\
The Subplot() function
The plt.subplot()
function in Matplotlib allows you to create multiple subplots within a single figure. You can arrange these subplots in a grid, specifying the number of rows and columns. Here's how it works:
-
Creating Subplots:
- The
plt.subplot()
function takes three integer arguments:nrows
,ncols
, andindex
. -
nrows
represents the number of rows in the grid. -
ncols
represents the number of columns in the grid. -
index
specifies the position of the subplot within the grid (starting from 1). - The function returns an
Axes
object representing the subplot.
- The
Example:
Let's create a simple figure with two subplots side by side:
import matplotlib.pyplot as plt
import numpy as np
# Create some sample data
x = np.array([0, 1, 2, 3])
y1 = np.array([3, 8, 1, 10])
y2 = np.array([10, 20, 30, 40])
# Create a 1x2 grid of subplots
plt.subplot(1, 2, 1) # First subplot
plt.plot(x, y1, label="Plot 1")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.title("Subplot 1")
plt.grid(True)
plt.legend()
plt.subplot(1, 2, 2) # Second subplot
plt.plot(x, y2, label="Plot 2", color="orange")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.title("Subplot 2")
plt.grid(True)
plt.legend()
plt.tight_layout() # Adjust spacing between subplots
plt.show()
In this example:
- We create a 1x2 grid of subplots using
plt.subplot(1, 2, 1)
andplt.subplot(1, 2, 2)
. - Each subplot contains a simple line plot with different data (
y1
andy2
). - We customize the labels, titles, and grid for each subplot.
Feel free to explore more complex arrangements by adjusting the nrows
and ncols
parameters! 📊🔍
Top comments (0)