Carbachol-mediated vascular relaxation was not modified by exercise. These results suggest that Ang-(1-7) acting through MasR participates in the enhancement of vascular insulin sensitivity after an exercise session. This new potential role of Ang-(1-7) could help in understanding how exercise improves vascular insulin sensitivity in normal and insulin-resistant states. © 2020 The Authors. Experimental Physiology © 2020 The Physiological Society.In the present study the dependence of the reaction rate of carbon-carbon reductive elimination from R 3 PAu(MeOH)(CH 3 ) 2 complexes inside [Ga 4 L 6 ] 12- metallocage on the nature of the phosphine ligand is investigated by computational means. Cyclosporin A The reductive elimination mechanism is analyzed in methanol solution and inside the metallocage. Classical molecular dynamics simulations reveal that the smaller the gold complex (which depends on the phosphine ligand size) the larger the number of solvent molecules encapsulated. The size of the phosphine ligands defines the space that is left available inside the cavity that can be occupied by solvent molecules. The Gibbs energy barriers calculated at DFT level, in excellent agreement with experiment both in solution and in the metallocage, show that the presence/absence of explicit solvent molecules inside the cavity significantly modifies the reaction rate. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Bisphenol A (BPA), diethylhexyl phthalate (DEHP) and pentabrominated diphenyl ether 99 (PBDE 99) are environmental toxicants belonging to the endocrine disrupting compounds (EDCs). They exert adverse effects on the various physiological systems, especially the reproductive system of humans and animals. The aim of this study was to investigate the effects of BPA, DEHP and PBDE 99 on progesterone (P4) synthesis in cultured bovine luteal cells. The bovine luteal cells isolated from the mid-luteal corpora lutea were exposed to different concentrations of BPA (1, 3, 10 and 30 µM), DEHP (1, 3, 10 and 30 µM) and PBDE 99 (0.1, 0.3, 1 and 3 µM) in a serum-free culture media for 48 and 96 hr. At 48 hr, the P4 level in the luteal cells decreased after treatment with all concentrations of BPA; 3, 10 and 30 µM of DEHP; and 3 µM of PBDE 99 compared to the control (p less then .05). Treatment of cells with 3-30 µM of BPA, 1-30 µM of DEHP and 1-3 µM of PBDE 99 for 96 hr resulted in reduction in P4 synthesis (p less then .05). However, lower concentrations of PBDE 99 (0.1 and 0.3 µM) increased P4 levels at 48 and 96 hr. Synthesis of P4 was lower at 96 hr compared to the 48 hr in the groups treated with BPA (30 µM), DEHP (1-30 µM), PBDE 99 (0.3-3 µM) and control group. Our results showed that BPA, DEHP and PBDE 99 are able to alter luteal steroidogenesis in bovine cells and can disrupt hormonal balance in the ovary. However, it is necessary to evaluate the exact mechanism underlying these effects in future studies. © 2020 Blackwell Verlag GmbH.PURPOSE In this study, we evaluated the renal protective effects of montelukast (MLK) against ionizing radiation (IR) induced nephrotoxicity in mice. MATERIALS AND METHODS Radioprotective effects of MLK were assessed by biochemical analysis including measurements of kidney malondialdehyde (MDA), reduced glutathione (GSH), and serum creatinine and urea levels. Besides, for further evaluation of protective effects of MLK on renal system, 99m Tc-dimercaptosuccinic acid (DMSA) has been applied. The total antioxidant capacity of MLK was measured by using 1,1-diphenyl-2-picryl hydrazyl radical reagents and compared with butylated hydroxyl toluene standard antioxidant. RESULTS The biochemical evaluation revealed that better results have been achieved for the groups administered with MLK than the only radiation group. Besides only IR-treated mice group, those treated with MLK demonstrated a significant decrease in urea and creatinine levels. Statistically, significant differences of MDA and SHG levels (P less then .05) were found between the radiation group and MLK plus IR-treated group. Also, 99m Tc-DMSA kidney uptake value (%ID/g) was observed lower for MLK plus IR-treated mice group than only radiation-treated mice group. CONCLUSIONS According to our findings, MLK has a potential role to be used as a renal protective agent against gamma radiation in radiotherapy. © 2020 Wiley Periodicals, Inc.α1 -Acid glycoprotein (AGP) interacts with lipid membranes as a peripheral membrane protein so as to decrease the drug-binding capacity accompanying the β→α conformational change that is considered a protein-mediated uptake mechanism for releasing drugs into membranes or cells. This study characterized the mechanism of interaction between AGP and lipid membranes by measuring the vacuum-ultraviolet circular-dichroism (VUVCD) spectra of AGP down to 170 nm using synchrotron radiation in the presence of five types of liposomes whose constituent phospholipid molecules have different molecular characteristics in the head groups (e.g., different net charges). The VUVCD analysis showed that the α-helix and β-strand contents and the numbers of segments of AGP varied with the constituent phospholipid molecules of liposomes, while combining VUVCD data with a neural-network method predicted that these membrane-bound conformations comprised several common long helix and small strand segments. The amino-acid composition of each helical segment of the conformations indicated that amphiphilic and positively charged helices formed at the N- and C-terminal regions of AGP, respectively, were candidate sites for the membrane interaction. The addition of 1 M sodium chloride shortened the C-terminal helix while having no effect on the length of the N-terminal one. These results suggest that the N- and C-terminal helices can interact with the membrane via hydrophobic and electrostatic interactions, respectively, demonstrating that the liposome-dependent conformations of AGP analyzed using VUVCD spectroscopy provide useful information for characterizing the mechanism of interaction between AGP and lipid membranes. © 2020 Wiley Periodicals, Inc.Cyclosporin A
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)