DEV Community

Gormsen Mouritsen
Gormsen Mouritsen

Posted on

The part regarding chromatin coordinator Satb1 in shaping TCR selection inside grown-up thymus.

We provide the first characterization of the nonlinear and time dependent rheologic response of viscoelastic bottom-up holographic models. More precisely, we perform oscillatory shear tests in holographic massive gravity theories with finite elastic response, focusing on the large amplitude oscillatory shear (LAOS) regime. The characterization of these systems is done using several techniques (i) the Lissajous figures, (ii) the Fourier analysis of the stress signal, (iii) the Pipkin diagram and (iv) the dependence of the storage and loss moduli on the amplitude of the applied strain. We find substantial evidence for a strong strain stiffening mechanism, typical of hyperelastic materials such as rubbers and complex polymers. This indicates that the holographic models considered are not a good description for rigid metals, where strain stiffening is not commonly observed. Additionally, a crossover between a viscoelastic liquid regime at small graviton mass (compared to the temperature scale), and a viscoelastic solid regime at large values is observed. Finally, we discuss the relevance of our results for soft matter and for the understanding of the widely used homogeneous holographic models with broken translations.Transport measurements are presented up to fields of 29 T in the recently discovered heavy-fermion superconductor UTe_2 with magnetic field H applied along the easy magnetization a axis of the body-centered orthorhombic structure. The thermoelectric power varies linearly with temperature above the superconducting transition, T_SC=1.5  K, indicating that superconductivity develops in a Fermi liquid regime. As a function of field the thermoelectric power shows successive anomalies which appear at critical values of the magnetic polarization. Remarkably, the lowest magnetic field instability for H∥a occurs for the same critical value of the magnetization (0.4  μ_B) than the first order metamagnetic transition at 35 T for field applied along the b axis. It can be clearly identified as a Lifshitz transition. check details The estimated number of charge carriers at low temperature reveals a metallic ground state distinct from LDA calculations indicating that strong electronic correlations are a major issue.We study the phonon dynamics in lattices of optomechanical resonators where the mutually coupled photonic modes are coherently driven and the mechanical resonators are uncoupled and connected to independent thermal baths. We present a general procedure to obtain the effective Lindblad dynamics of the phononic modes for an arbitrary lattice geometry, where the light modes play the role of an effective reservoir that mediates the phonon nonequilibrium dynamics. We show how to stabilize stationary states exhibiting directional heat currents over arbitrary distance, despite the absence of thermal gradient and of direct coupling between the mechanical resonators.We describe the flows and morphological dynamics of topological defect lines and loops in three-dimensional active nematics and show, using theory and numerical modeling, that they are governed by the local profile of the orientational order surrounding the defects. Analyzing a continuous span of defect loop profiles, ranging from radial and tangential twist to wedge ±1/2 profiles, we show that the distinct geometries can drive material flow perpendicular or along the local defect loop segment, whose variation around a closed loop can lead to net loop motion, elongation, or compression of shape, or buckling of the loops. We demonstrate a correlation between local curvature and the local orientational profile of the defect loop, indicating dynamic coupling between geometry and topology. To address the general formation of defect loops in three dimensions, we show their creation via bend instability from different initial elastic distortions.keV-scale gauge-singlet fermions, when allowed to mix with the active neutrinos, are elegant dark matter (DM) candidates. They are produced in the early Universe via the Dodelson-Widrow mechanism and can be detected as they decay very slowly, emitting x-rays. In the absence of new physics, this hypothesis is virtually ruled out by astrophysical observations. Here, we show that new interactions among the active neutrinos allow these sterile neutrinos to make up all the DM while safely evading all current experimental bounds. The existence of these new neutrino interactions may manifest itself in next-generation experiments, including DUNE.We experimentally demonstrate an approach to scale up quantum devices by harnessing spin defects in the environment of a quantum probe. We follow this approach to identify, locate, and control two electron-nuclear spin defects in the environment of a single nitrogen-vacancy center in diamond. By performing spectroscopy at various orientations of the magnetic field, we extract the unknown parameters of the hyperfine and dipolar interaction tensors, which we use to locate the two spin defects and design control sequences to initialize, manipulate, and readout their quantum state. Finally, we create quantum coherence among the three electron spins, paving the way for the creation of genuine tripartite entanglement. This approach will be useful in assembling multispin quantum registers for applications in quantum sensing and quantum information processing.Cooling of beams of gold ions using electron bunches accelerated with radio-frequency systems was recently experimentally demonstrated in the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. Such an approach is new and opens the possibility of using this technique at higher energies than possible with electrostatic acceleration of electron beams. The challenges of this approach include generation of electron beams suitable for cooling, delivery of electron bunches of the required quality to the cooling sections without degradation of beam angular divergence and energy spread, achieving the required small angles between electron and ion trajectories in the cooling sections, precise velocity matching between the two beams, high-current operation of the electron accelerator, as well as several physics effects related to bunched-beam cooling. Here we report on the first demonstration of cooling hadron beams using this new approach.check details

Top comments (0)