DEV Community

gleamso
gleamso

Posted on

Automating OG Images: From Manual Design to API-Driven Generation

The journey from manually creating OpenGraph images to implementing an automated API-driven system represents a critical evolution for growing web applications. Today, I'll share how I transformed this process at gleam.so, moving from individual Figma designs to an automated system handling thousands of images.

The Manual Phase: Understanding the Baseline

Initially, like many developers, I created OG images manually:

// Early implementation
const getOGImage = (postId: string) => {
  return `/images/og/${postId}.png`;  // Manually created in Figma
};
Enter fullscreen mode Exit fullscreen mode

This process typically involved:

  1. Opening Figma for each new image
  2. Adjusting text and elements
  3. Exporting to the correct size
  4. Uploading and linking the image

Average time per image: 15-20 minutes.

First Step: Templating System

The first automation step involved creating reusable templates:

interface OGTemplate {
  layout: string;
  styles: {
    title: TextStyle;
    description?: TextStyle;
    background: BackgroundStyle;
  };
  dimensions: {
    width: number;
    height: number;
  };
}

const generateFromTemplate = async (
  template: OGTemplate,
  content: Content
): Promise<Buffer> => {
  const svg = renderTemplate(template, content);
  return convertToImage(svg);
};
Enter fullscreen mode Exit fullscreen mode

This reduced creation time to 5 minutes per image but still required manual intervention.

Building the API Layer

The next evolution introduced a proper API:

// api/og/route.ts
import { ImageResponse } from '@vercel/og';
import { getTemplate } from '@/lib/templates';

export const config = {
  runtime: 'edge',
};

export async function GET(request: Request) {
  try {
    const { searchParams } = new URL(request.url);
    const template = getTemplate(searchParams.get('template') || 'default');
    const content = {
      title: searchParams.get('title'),
      description: searchParams.get('description'),
    };

    const imageResponse = new ImageResponse(
      renderTemplate(template, content),
      {
        width: 1200,
        height: 630,
      }
    );

    return imageResponse;
  } catch (error) {
    console.error('OG Generation failed:', error);
    return new Response('Failed to generate image', { status: 500 });
  }
}
Enter fullscreen mode Exit fullscreen mode

Implementing Caching Layers

Performance optimization required multiple caching layers:

class OGCache {
  private readonly memory = new Map<string, Buffer>();
  private readonly redis: Redis;
  private readonly cdn: CDNStorage;

  async getImage(key: string): Promise<Buffer | null> {
    // Memory cache
    if (this.memory.has(key)) {
      return this.memory.get(key);
    }

    // Redis cache
    const redisResult = await this.redis.get(key);
    if (redisResult) {
      this.memory.set(key, redisResult);
      return redisResult;
    }

    // CDN cache
    const cdnResult = await this.cdn.get(key);
    if (cdnResult) {
      await this.warmCache(key, cdnResult);
      return cdnResult;
    }

    return null;
  }
}
Enter fullscreen mode Exit fullscreen mode

Resource Optimization

Handling increased load required careful resource management:

class ResourceManager {
  private readonly queue: Queue;
  private readonly maxConcurrent = 50;
  private activeJobs = 0;

  async processRequest(params: GenerationParams): Promise<Buffer> {
    if (this.activeJobs >= this.maxConcurrent) {
      return this.queue.add(params);
    }

    this.activeJobs++;
    try {
      return await this.generateImage(params);
    } finally {
      this.activeJobs--;
    }
  }
}
Enter fullscreen mode Exit fullscreen mode

Integration Example

Here's how it all comes together in a Next.js application:

// components/OGImage.tsx
export function OGImage({ title, description, template = 'default' }) {
  const ogUrl = useMemo(() => {
    const params = new URLSearchParams({
      title,
      description,
      template,
    });
    return `/api/og?${params.toString()}`;
  }, [title, description, template]);

  return (
    <Head>
      <meta property="og:image" content={ogUrl} />
      <meta property="og:image:width" content="1200" />
      <meta property="og:image:height" content="630" />
    </Head>
  );
}
Enter fullscreen mode Exit fullscreen mode

Performance Results

The automated system achieved significant improvements:

  • Generation time: <100ms (down from 15-20 minutes)
  • Cache hit rate: 95%
  • Error rate: <0.1%
  • CPU usage: 15% of previous implementation
  • Cost per image: $0.0001 (down from ~$5 in manual labor)

Key Learnings

Through this automation journey, several crucial insights emerged:

  1. Image Generation Strategy

    • Pre-warm caches for predictable content
    • Implement fallbacks for failures
    • Optimize template rendering first
  2. Resource Management

    • Implement request queuing
    • Monitor memory usage
    • Cache aggressively
  3. Error Handling

    • Provide fallback images
    • Log failures comprehensively
    • Monitor generation metrics

The Path Forward

The future of OG image automation lies in:

  1. AI-enhanced template selection
  2. Dynamic content optimization
  3. Predictive cache warming
  4. Real-time performance tuning

Simplifying Implementation

While building a custom solution offers valuable learning experiences, it requires significant development and maintenance effort. That's why I built gleam.so, which provides this entire automation stack as a service.

Now you can:

  • Design templates visually
  • Preview all options for free
  • Generate images via API (Open beta-test for lifetime users)
  • Focus on your core product

75% off lifetime access ending soon āœØ

Share Your Experience

Have you automated your OG image generation? What challenges did you face? Share your experiences in the comments!


Part of the Making OpenGraph Work series. Follow for more web development insights!

Top comments (0)