Hey dev friends! π Following our Making OpenGraph Work, let's dive into a real performance optimization journey. Here's what happened when I needed to optimize gleam.so's OG image generation from 2.5s to under 500ms.
Initial State: The Problem π
When I first launched gleam.so, performance wasn't great:
Initial Metrics:
- Average generation time: 2.5s
- P95 generation time: 4.2s
- Memory usage: ~250MB per image
- Cache hit rate: 35%
- Failed generations: 8%
Users were noticing:
"Preview takes too long to load"
"Sometimes images don't generate at all"
"System feels sluggish"
Measurement Setup π
First, I set up proper monitoring:
interface PerformanceMetrics {
generation: {
duration: number; // Total time
steps: { // Step-by-step timing
template: number;
render: number;
optimize: number;
store: number;
};
memory: number; // Memory usage
success: boolean; // Success/failure
};
cache: {
hit: boolean; // Cache hit/miss
duration: number; // Cache operation time
};
}
// Monitoring implementation
const monitor = new PerformanceMonitor({
metrics: ['generation', 'cache', 'memory'],
interval: '1m',
retention: '30d'
});
The Optimization Journey π οΈ
1. Template Preprocessing
Before:
// Parsing templates on every request
const renderTemplate = async (template, data) => {
const parsed = await parseTemplate(template);
return renderImage(parsed, data);
};
After:
// Precompiled templates
const templateCache = new Map<string, CompiledTemplate>();
const renderTemplate = async (templateId, data) => {
if (!templateCache.has(templateId)) {
templateCache.set(
templateId,
await compileTemplate(templates[templateId])
);
}
return renderImage(templateCache.get(templateId), data);
};
// Result:
// - 300ms saved per generation
// - 40% less memory usage
2. Multi-Layer Caching
class OGImageCache {
constructor() {
this.memory = new QuickLRU({ maxSize: 100 });
this.redis = new Redis(process.env.REDIS_URL);
this.cdn = new CloudflareKV('og-images');
}
async get(key: string): Promise<Buffer | null> {
// 1. Check memory cache
const memoryCache = this.memory.get(key);
if (memoryCache) return memoryCache;
// 2. Check Redis
const redisCache = await this.redis.get(key);
if (redisCache) {
this.memory.set(key, redisCache);
return redisCache;
}
// 3. Check CDN
const cdnCache = await this.cdn.get(key);
if (cdnCache) {
await this.warmCache(key, cdnCache);
return cdnCache;
}
return null;
}
}
// Result:
// - Cache hit rate: 35% β 85%
// - Average response time: 2.5s β 800ms
3. Resource Optimization
// Before: Loading fonts per request
const loadFonts = async () => {
return Promise.all(
fonts.map(font => fetch(font.url).then(res => res.arrayBuffer()))
);
};
// After: Preloaded fonts
const FONTS = {
inter: fs.readFileSync('./fonts/Inter.ttf'),
roboto: fs.readFileSync('./fonts/Roboto.ttf')
};
// Result:
// - Font loading: 400ms β 0ms
// - Memory usage: -30%
4. Parallel Processing
// Before: Sequential processing
const generateOG = async (template, data) => {
const image = await render(template, data);
const optimized = await optimize(image);
const stored = await store(optimized);
return stored;
};
// After: Parallel processing
const generateOG = async (template, data) => {
const [image, resources] = await Promise.all([
render(template, data),
loadResources(template)
]);
const [optimized, stored] = await Promise.all([
optimize(image),
prepareStorage()
]);
return finalize(optimized, stored);
};
// Result:
// - 30% faster generation
// - Better resource utilization
Current Performance π
After these optimizations:
Current Metrics:
- Average generation time: 450ms (-82%)
- P95 generation time: 850ms (-80%)
- Memory usage: 90MB (-64%)
- Cache hit rate: 85% (+50%)
- Failed generations: 0.5% (-7.5%)
Key Learnings π
-
Measurement is Critical
- Set up monitoring first
- Track detailed metrics
- Make data-driven decisions
-
Cache Strategically
- Multiple cache layers
- Smart invalidation
- Warm cache for popular items
-
Resource Management
- Preload where possible
- Optimize memory usage
- Parallel processing
-
Error Handling
- Graceful degradation
- Detailed error tracking
- Automatic recovery
Implementation Tips π‘
- Start with Monitoring
// Simple but effective monitoring
const track = metrics.track('og_generation', {
duration: endTime - startTime,
memory: process.memoryUsage().heapUsed,
success: !error,
cached: !!cacheHit
});
- Cache Wisely
// Generate deterministic cache keys
const getCacheKey = (template, data) => {
return crypto
.createHash('sha256')
.update(`${template.id}-${JSON.stringify(data)}`)
.digest('hex');
};
- Handle Errors Gracefully
// Always provide a fallback
const generateWithFallback = async (template, data) => {
try {
return await generateOG(template, data);
} catch (error) {
metrics.trackError(error);
return generateFallback(template, data);
}
};
Try It Yourself! π
I've implemented all these optimizations in gleam.so, and for Black Friday, you can try the optimized system at 75% off! Generate blazing-fast OG images without worrying about performance.
Share Your Experience π€
- What performance challenges have you faced with OG images?
- Which optimization techniques worked for you?
- Any tips to share with the community?
Let's discuss in the comments!
*This is part of the "Making OpenGraph Work" series. *
Top comments (0)